Further GaN growth experience with MBE

Another two weeks, from the last week of July to the first week of August were scheduled with the attempt to grow nanowire structure of GaN material on the substrate of Si. There were five samples in total I could grow within these period. Considering the normal workload, the number of grown samples were quite normal.

I think I will not have any growth chance for the next 3-4 weeks ahead, since there are other person who also will use this MBE requiring different chamber condition. That is why the MBE system need to be stabilized for some time, 2-3 days before a cleaning and purifying stage are conducted from Nitrogen environmental condition.

I was thinking to grow two-three samples each day last week. But I guess it was impossible to do, since the growth itself took 3 hours added with another 2-3 hours calibrating the flux of the source, outgassing the sample and preparing the chamber in such way to favorably grow in suppressed contaminated environment which can destruct the growth of GaN. Moreover, I am not confident enough and officially not allowed to transfer substrate from one chamber to another, or else I mess up with the machine. Fallen substrate holder in any chamber is not really good idea, since the engineer has to vent the chamber, pump back to vacuum, bake the chamber to remove the contaminants-oxides and another source calibrations here and there. Believe it or not, this sequence will take around 3-4 weeks. That is why I do not want to mess up. Simple reason why I can’t grow more than one sample is because of the available substrate holder for the 2 inch wafer is only one. Well, at the same time I am relieved.

Normally, I start ramp down the load-lock chamber at 9 AM. While it is ramping down, I calibrated the required source fluxes to be met at certain number so that it equivalents to the growth rate I want. Well, It takes like one hour. Then my friend helped me to transfer the sample from load lock chamber to heater station located in buffer chamber. Another hour spent to let the sample heated to remove any possible contamination, until the pressure is low enough. Finally the sample is transferred from buffer chamber to growth chamber. Yet the growth can’t be started directly. The real outgassing is done in the growth chamber. Why is it real? Because this process undergoes very high temperature up to 900 °C. It can’t be done in the buffer chamber, as the highest temperature is limited up to 600 °C. It is taken to avoid As evaporation on the substrate holder which has been used previously with the As based sample or growth. The evaporated As atoms can make the viewport to be darkened, making the grower can’t really see and therefore disturbing the transfer process. While in the growth chamber, not much to be seen and it is ok to let the outgassing being done in the very high temperature.

Outgassing process itself takes time and once more, very low pressure or good vacuum pressure indicates less and less contamination exist on the surface of the sample. Once it is done, then the growth can be started. Generally, these steps are the same for all typical growth using MBE, no matter what substrate and kind of structure. One thing to remember is that the different sample may undergo different outgassing temperature. For instance GaAs substrate must not exceed than 650 °C to avoid evaporation of As even in the As chamber condition. Without As help, the temperature for GaAs must not exceed more than 400 °C. If it being done, the sample will be ruined even before the growth has not started.

Now what I did for the past two weeks actually can be divided into two different methods. First was directly grown on Si and the second part was helped by buffer layer of Al. The first growth was exactly similar with the previous weeks with the differences in the nitridation treatment and growth temperature. The reasons for changing these two growth conditions were to put more nitrogen incorporation in the nanowire structure and further increase the probability of getting nanowire structure instead of thin film. Well, after scanning electron microscopy measurement, I had a feeling of what the nanowire looks like, better than the last growth but the problem located on how short the grown nanostructure was. The growth time was almost two and half hours, but the height was less than 200 nm where I expected to be at least 400 nm.

Then at the second growth, as my friend suggested me that using Al deposition forming AlN after nitridation can increase the probability of getting nanowire structure, way much better than directly on bare Si. There are many reports using this method and one example is by Songmuang et al. After some discussion, in what sequence the Al and N shutter should be opened and the expectation of what formation will be occurred, finally the plan was written down. Few considerations have been taken to avoid and suppress the formation of SiN by our plan. The growth process was observed using reflective high energy electron diffraction where the formation of AlN and GaN can be witnessed.

The result was not as I was expecting. The grown structure was the same with the structure without AlN buffer layer: short grown nanostructure. I knew there was an issue on the inhomogeneous heating where I could find different structure from the edge to the center of the wafer. The first of two last growth experienced different substrate temperature during AlN formation and slightly higher growth temperature. For the last growth which I have not checked using scanning electron microscope, I increased the growth rate for Ga source. Why? I want to re-confirm my understanding whether I will be getting higher height of grown nanostructure. By using this growth rate, I may get planar thin film instead of nanowire structure. Well, my objective for this sample is not to get the nanowire structure, but to obtain different nanostructure and if it is proven, then I will be happy 😀

I will show the “giant” foot step mark I found in my sample during measurement using scanning electron microscope. I am not quite sure why there is suppressed growth on these area and I can find quite a lot structure similar like these actually. Many factors such as contamination or fracture can give rise to such kind of suppressed growth.

"Giant" foot step
“Giant” foot step
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s